
TILLEX COPPER

Metals Creek Resources (MEK) owns two patents covering 32.8 hectares and a copper deposit called the Tillex Deposit. The Tillex property was first discovered in 1973 by Westmin Resources Ltd. MEK acquired the property in September 2008 when MEK purchased said patents from Savant Explorations Ltd. Since the purchase of the property MEK has conducted linecutting, ground geophysics and drilled 27 holes to increase the drilling density of the deposit. The patent is located in Currie Twp, approximately 5km southwest of Matheson Ontario, along the prolific gold belt in close proximity to the Porcupine-Destor Break.

On the property is a **non 43-101 compliant** near surface resource of 1,338,000 tonnes grading 1.56% Cu that was calculated by Pacifica Resources Ltd. in 1990.

The property is within the Archean Tisdale Volcanic Assemblage, a steeply dipping, succession of pillowed, tholeiitic basalt and minor rhyolite with interflow meta-sedimentary rocks including chert, carbonaceous siltstone, lithic-wacke and argillites.

Mineralization on the property appears to be stratabound, hosted within but not limited to a thick package of graphitic argillite. The argillites are sub-vertical to steeply dipping (eastward) and strike at approximately 045°. The thickness of the chalcopyrite/pyrite mineralization within the graphitic argillites generally exceeds 20 meters containing up to 4-5% chalcopyrite +/- pyrite. The chalcopyrite mineralization within the argillites is mainly in the form of stringers and fine disseminations along with occasional round nodules, associated with late extensional qtz/feldspar stringers and veinlets. The clots or nodules of mineralization are generally elongate parallel to stratigraphy and reach as large as 3-4cm in diameter. Much of the disseminated/stringer mineralization conforms to bedding, but cross-cutting stringers are not un-common. Occasionally semi-massive to massive chalcopyrite seams are cut as seen in the photo below. Chalcopyrite is also found in stringer form in dacite tuffs adjacent to the argillites. Associated with the copper mineralization is elevated silver, with significant zones such as 355.30g/t Ag / 5.00m

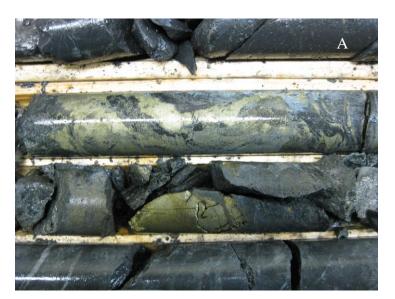
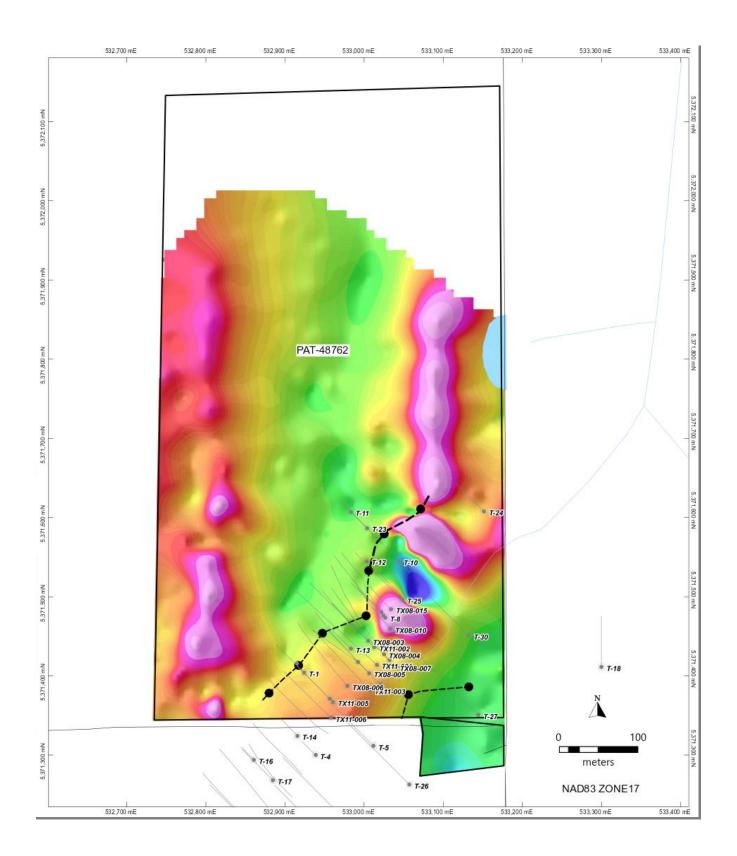


Plate A: Semi-massive to massive chalcopyrite in argillites Plate B: Nodule style chalcopyrite in argillites Plate C: Random/cross-cutting chalcopyrite stringers/veinlets Plate D: disseminated to stringer chalcopyrite conforming to bedding Feldspar porphyry dikes are spatially associated with the mineralization and intrude both the mineralized argillites and volcaniclastic host rocks. These dikes are generally weakly altered and contain trace to 1% disseminated chalcopyrite mineralization within late quartz structures.

Copper mineralization within feldspar porphyry

Minor galena and sphalerite has been found within thin late quartz-carbonate stringers/veinlets adding anomalous grades of lead and zinc respectively. The base metal numbers generally lie within the dacites, outside of the sediment package that hosts the copper mineralization.

Lead/zinc mineralization along thin veinlet


Metals Creek Drilling Cu-Ag Highlights

Hole	From (m)	To (m)	Length (m)	Cu%	Ag g/t	
TX08-001	37.20	65.00	27.80	0.272	2.28	
TX08-002	30.95	128.00	97.05	1.194	5.32	
incl.	30.95	68.00	37.05	2.583	7.72	
TX08-003	36.10	41.00	4.90	0.616		
and	50.63	73.50	22.87	1.051	6.06	
incl.	54.00	62.30	8.30	2.362	10.91	
TX08-004	42.00	123.13	81.13	1.834	8.63	
incl.	53.00	80.00	27.00	2.726	7.74	
TX08-005	51.51	123.00	71.49	1.293 1.288 2.160	7.27 5.98 10.74	
incl.	51.51	57.66	6.15			
incl.	73.66	107.95	34.29			
incl.	117.08	123.00	5.92	1.137	6.14	
TX08-006	39.84	93.03	53.19	0.659	3.19	
incl.	64.00	85.00	21.00	1.060	3.62	
TX08-007	110.43	124.80	14.37	0.874	3.98	
incl.	110.43	117.30	6.87	1.270	4.92	
TX08-008	48.00	90.00	42.00	1.395	5.81	
incl.	48.00	71.00	23.00	2.136	5.40	
TX08-010	46.70	68.30	21.60	0.830	5.20	
incl.	46.70	54.00	7.30	0.985	10.37	
TX08-015	41.20	49.00	7.80	0.659	3.19	
and	100.00	114.00	14.00	1.106	9.34	
incl.	100.00	107.00	7.00	1.504	7.11	
TX11-001	40.70	107.00	66.30	1.432	6.78	
incl.	87.20	102.00	14.80	2.952	14.99	
TX11-002	39.30	82.50	43.20	1.265	5.45	
TX11-003	86.84	96.88	10.04	1.391	8.97	
TX11-004	55.10	60.00	4.90	1.197	6.81	
TX11-005	41.64	83.00	41.36	0.446	5.45	
incl.	41.64	47.64	6.00	1.471	8.68	
TX11-006	48.00	81.00	33.00	0.855	9.36	
incl.	48.00	57.50	9.50	2.062	6.35	
incl.	73.53	79.35	5.82	0.298	20.19	
TX11-007		Ne	o significant assays			
TX11-008	54.77	140.25	85.48	1.650	33.24	
incl.	89.00	94.00	5.00	5.553	355.30	
TX24-020	34.00	144.00	110.00	1.687	7.05	
incl.	57.00	83.72	26.72	2.457	6.89	
and	103.40	127.00	23.60	2.830	13.85	
TX24-021	38.60	102.50	63.90	1.940	10.22	
incl.	43.00	49.00	6.00	1.70	32.95	
and	54.00	69.20	15.20	3.21	4.77	
and	83.60	101.50	17.90	2.58	15.88	
TX24-022	36.95	129.00	92.05	2.12	12.18	
incl.	98.00	127.00	29.00	3.26	20.92	
and	108.6	127.00	18.40	4.02	19.70	
TX24-023	1		ed due to ground cor			

Metals Creek Drilling Pb-Zn Highlights

Hole	From (m)	To (m)	Length (m)	Pb%	Zn%	
TX08-002	72.00	110.00	38.00	0.29	0.50	
incl.	97.50	99.43	1.93	0.46	1.67	
incl.	107.00	109.00	2.00	2.02	3.60	
TX08-009	96.00	99.00	3.00	0.17	0.60	
and	99.00	101.00	2.00	1.01	nsa	
TX08-014	85.00	89.00	4.00	0.43	0.33	
and	98.94	99.71	0.77	2.11	0.54	
TX11-003	63.40	67.00	3.60	0.52	NSA	

South	TX11-006 T 0.855/33.00 0.920	-2 T-13 0/2.28 0.977/9.89	TX24-022 2.12/92.05 TX11-002 1.270/43.20		TX08-015 0.659/7.80	T-25 0.761/16.72		North
		TX11-003		7.0				
•T-14	• 1.	T-3 1.380/10.14 316/12.48			T-12)2/27 43			200 n
6 7-4	T 1.397 TX08-008 1.395/42.00	-7 7/5.78 TX08-006 0.659/53.19 TX08-005 1.293/71.49	TX11-007 1.430/66.30 TX11-007 0.310/1.00 TX08-007 0.874/14.33		• T-11 NSA		Hole-ID Cu% / Length	
~				7.9 0.737/17.64 52/12.66	• T-30 NSA		(Tillex) Hole-ID ℃U% / Length (Footwall)	100 n
29		26					Tillex horizon	
	• 7-2 NS	A A		• T-27 • NSA			Footwall horizon	
								0 n

