YELLOW FOX ANTIMONY / GOLD
PROPERTY

METALS CREEK RESOURCES LTD

NTS 02D/14

Licenses: 027536m & 037936M




INTRODUCTION

Prospecting in 2011 by Metals Creek Resources resulted in the new discovery of
antimony within an area primarily explored for gold. This prospecting program
returned samples anomalous in gold (Au) ,antimony (Sb), lead (Pb), zinc (Zn) and silver
(Ag) referred to as the Yellow Fox Showing. Trenching took place for better exposure,
resulting in grab samples to 59.43g/t Au, 11.10% Sb, 7.00% Zn, 72.90g/t Ag and 5.50%
Pb in arsenopyrite-stibnite veins within altered monzogranite. Channel results of
0.35g/t Au, 3.04g/t Ag, 0.77% Zn, 0.27% Sb and 0.21% Pb over 16.49m have been
attained. Included in this channel result in a higher grade channel sample of 4.57% Sb,
0.84% Pb, 0.35% Zn and 16.5 g/t Ag. Soil sampling resulted in the identification of
several discrete indicator mineral anomalies consisting of As, Pb, Zn and Sb (See images
below). The Yellow Fox Project is located 25km north-northeast of Beaver Brook
Antimony Mine. This deposit is the only producing antimony mine in north America and
is currently under care and maintenance. A large portion of this project has not seen
any exploration for antimony and remains a high priority exploration target. The Yellow
Fox Project has never been drill tested.

LAND TENURE

The Yellow Fox Property consists of 28 claim units in two licences for a total of 7 sq. km.
All Licenses are 100% owned by Metals Creek Resources highlighted in Table 1 below.
The project is now in an option agreement with Lomiko Metals.

Table 1: Yellow Fox Property Exploration Licences

Probert License Client Name Issuance No. Of NTS Map
perty Number Date Claims Sheets
Yellow Fox 027536M Metals Creek Resources | Dec 26/2019 4 12D/14
Yellow Fox 037936M Metals Creek Resources May 2/2020 24 12D/14-15
TOTAL 2 Licenses 28 units
LOCATION AND ACCESS

The Yellow Fox Property is located approximately 10 km southwest of the Town of
Glenwood NL, and south of the Trans-Canada Highway. The Property occurs within NTS
map sheets 02D/14 and 15 with access excellent along several logging and skidder
roads originating from Glenwood. The main Yellow Fox showing is located in the
central part of License 027536M, 5km from the western end of Gander Lake. The
property is centered at approximately UTM (NAD 27) grid coordinates are 5,419,400m
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The property lies 25 kilometers north-northeast of the

North and 645,300m East.

Beaver Brook Antimony Mine which is currently on care and maintenance.

Property Location Map
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REGIONAL GEOLOGY

The Yellow Fox Property occurs within the eastern Dunnage Zone, approximately 20km
west of the Dunnage Zone — Gander Zone boundary (Williams, 1979). Within the
Dunnage Zone, geology ranges from Cambro-Ordovician ophiolitic, volcanic,
volcaniclastic and sedimentary rocks of island-arc and back-arc affinity. The zone
consists of the Exploits subzone to the east and the Notre Dame subzone to the west.
The Gander Zone contains pre to middle Ordovician rocks of predominantly continental
derivation and is subdivided into three subzones: Gander Lake, Mount Cormack and
Meelpaeg (Williams, 1993). The boundary between the Gander and Dunnage Zones is
marked by the Gander River Complex — a discontinuous belt of ophiolitic rocks (O’Neil
and Blackwood, 1989). The majority of Metals Creek Resources’ Yellow Fox Property is
contained within the Mount Payton Intrusive Suite which is a large Siluro-Devonian
batholith that has intruded the Botwood, Indian Islands and Davidsville groups. There
are numerous fine to medium-grained intrusive gabbroic bodies related to the Mount
Peyton Intrusive Suite (Evans, 2001a).
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PROPERTY GEOLOGY

The Yellow Fox claims are underlain by fine to medium grained monzogranite rocks of
the Mount Peyton Intrusive Suite (Figure 3). The Yellow Fox Project lies along the same
northeast trending structural zone (Dog Bay line) to that of the Beaver Brook Mine.
Geologically, Yellow Fox exhibits similar traits to that of Beaver Brook with cross cutting
structural zones which show strong carbonate alteration with sulphide bearing
stringers to veins of stibnite and arsenopyrite with similar high-grade tenors of
antimony, gold, lead, zinc and silver. The presence of arsenopyrite is also present in
both locations.

The following excerpt is taken directly from A Geological Survey Report 20-1 written by
H. Sandeman and C. Spurrell 2020...

“The showing is hosted by fractured, muscovite-pyrite-rutile-altered, medium-grained,
plagioclase porphyritic , granophyric-textured biotite +- hornblende monzogranite.
Muscovite-pyrite-rutile alteration occurs in an approximately 100m long by 30m wide,
broadly north-trending bleached and rusty zone, characterized by three distinct fracture
sets. The most prominent fracture set is north-trending (3560/800E), occurs on a
spacing of 5-20cm and is accompanied by abundant muscovite and disseminated pyrite.
A weakly developed, north-northeast-trending (0250/860E) fracture set, locally hosts a
few narrow (<4cm) stibnite-quartz-arsenopyrite veins. Arsenopyrite, mainly confined to
vein margins, us extensively altered to supergene scorodite and goethite. The muscovite-
pyrite-rulite alteration and north-trending fractures are cut by the north-northeast-
trending  stibnite-quartz-arsenopyrite-veined  fractures. Relative to unaltered
monzogranite, the early muscovite-pyrite-rutile-associated fracture set, and altered-host
monzogranitesamples, are typically moderately anomalous in As, Au, Sb, Pb and Cd. In
contrast, the later stibnite-quartz-arsenopyrite-veined fractures and host rocks are
strongly anomalous in all metals (Sb, As, Au, Ag, Pb, Zn and Cd) and weakly anomalous in
Ccu.”

Samples collected by Sandeman and Spurrell (2020) have returned maximum values of
129,000ppm As, 40,700ppm Sb, 29,970ppm Pb, and 10,600ppm Zn.
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Plate 2: vein of stibnite-arsenopyrite mineralization
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PREVIOUS REGIONAL WORK

A large portion of the exploration history was taken from Paragon Minerals Corp’s
‘Assessment Report on the Soil Geochemistry Survey and Prospecting for the Mt.
Peyton Linear Property central Newfoundland’ (Milton, 2008) and covers a broad area
around Metals Creek’s Yellow Fox Property:

The Geological Survey of Newfoundland and Labrador completed 1:50,000 scale
bedrock mapping of the Mount Peyton map sheet (Dickson, 1993). A regional lake
sediment geochemical survey was also completed by the survey and it identified some
potential target areas for gold (Davenport, et al., 1988).

Noranda Exploration completed some detailed exploration work, including trenches,
geophysical surveys and diamond drilling to trace the source of mineralized quartz-vein
float samples. This program led to the discovery of the Hurricane and Corsair prospects
and the initial recognition of the Peyton trend as well as the Apache, Comanche and
Sabre showings (Tallman, 1990; Tallman, 1991).

In 1999, Black Bart Prospecting Inc began prospecting in the Shirley Lake area with
efforts focused on the possible extension of the Peyton Trend. The work was primarily
focused along areas with coincidental anomalous values for arsenic in lake sediments.
Several concentrations of gold-bearing float, along with base metals, were discovered
and a centralized land position around Shirley Lake was acquired (Evans, 2001a).

In December 2001, Rubicon Minerals Corp. entered into an option agreement with
Black Bart Prospecting Inc. to explore the Peyton Trend. During the spring and fall of
2002, a limited prospecting and reconnaissance soil sampling program was carried out
to assess the potential of the property. As a result, sampling returned values of 17.0
g/t and 18.9 g/t gold from an angular boulder. Another area named the ‘SS’ showing
located approximately 2.5 km north of Shirley Lake, returned values of 1.0 g/t and 1.26
g/t gold.

From March to November, 2002, Rubicon conducted a limited prospecting, geological
mapping and soil sampling program as part of a regional exploration program on the
Mount Peyton Linear Property (Sparkes, 2002). The prospecting effort resulted in a
new discovery of auriferous quartz-arsenopyrite float south of Middle Lake that
assayed 17.030 g/t and 18.895 g/t and a new mineralized zone in bedrock located
approximately 2.4 km north of Shirley Lake (‘SS’ Zone).

From July 2002 through September 2003, another regional program was initiated to
further explore the Peyton Trend. It included more detailed prospecting in areas of
known gold mineralization in angular float and soil sampling to cover other areas with
little previous mineral exploration by Rubicon Minerals Corp. Assays up to 14.1 g/t
gold in float were achieved.
|
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From July 2007 through November 2007, Paragon Minerals conducted a regional
program to further explore the Peyton and Hurricane Trends (House, 2007). It included
more detailed prospecting in areas of known gold mineralization in float, a soil/rock
geochemistry survey to evaluate other areas with little historic mineral exploration,
plus a diamond drill program to test mineralized zones intersected by Noranda in 1990
at the Hurricane Trend.

In mid-October, 2008, Paragon Minerals Corp. conducted a soil geochemistry survey
and prospecting program to better assess the potential of the area to host gold
mineralization.

METALS CREEK WORK ON PROPERTY

From May to December 2011, Metals Creek Resources (MEK) of Gander NL, completed
a program of B-horizon soil sampling and prospecting on the Yellow Fox Property. This
prospecting led to the discovery of the main Yellow Fox showing which resulted in MEK
carrying out trenching and surface stripping over a small area. This first year work was
an attempt to assess the potential of the property to host gold mineralization. In total,
36 soil samples and 11 prospecting grab samples were taken along with 13 grab
samples from the newly trenched areas. Subsequently, 153 cut channel samples were
put down in the new trenches on present licence 027536M. Soil sampling also
resulting in the identification of additional discrete anomalies (See images below) of
indicator minerals (As,Sb,Pb,Zn) outside of the main discovery area further enhancing
the exploration potential of the project.

Initial prospecting took place as access to the property is very good due to the forest
roads bisecting the claim group. ATV’s were used and small traverses off the shoulders
of the roads were performed. This initial prospecting resulted in a concentration of
highly anomalous gold values with one sample returning an assay of 59.413 g/t Au
(main Yellow Fox showing). The sampling showed anomalous lead, zinc, antimony and
silver. This led to a larger work program in the area including B-horizon soils.

The soil program was conducted over two, 100m spaced, east-west trending recce lines
over the higher-grade gold sample in an attempt to trace the direction of
mineralization. Sampling of the soil was done at approximately 25m along the line with
locations recorded with a handheld GPS.

Trenching was carried out over the vicinity of the anomalus grab samples. Six 25-45m
stripped and trenched areas were put down running east-west over the Yellow Fox
Showing. Upon completion of trenching, 13 grab samples were collected throughout
the trenches with high-grade assay values to 7.00% Zn, 11.10% Sb, 72.90g/t Ag, 5.50%
Pb and 1.88 g/t Au. The first five trenches were then channel sampled along their
length using a diamond bladed rock saw. The results from this trenching were
encouraging as Trench #1 showed an assay value of 0.35g/t Au, 0.77% Zn, 0.27% Sb,
3.04g/t Ag and 0.21% Pb over 16.49m within 18 continuous samples with a higher-
grade channel cut grading 4.57% Sb, 0.84% Pb, 0.35% Zn and 16.5 g/t Ag over 43cm.

|
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The trenches have since been reclaimed. These results from the trenching give the
possibility that a large scale, bulk tonnage deposit could be present on the Yellow Fox
claim group.

Trench Grab Samples

. . Au As Zn Cu Sb A Pb

SAMPLE# | Northing | Easting | TYPE | CERTNO | o | 50 | 0 | oo | (opm) (pp‘-:'n) (ppm)
96551 5420834 | 645086 | olc | 645-1101435 | 1386 | >2200 | 1654 77 90000 | 18.4 4100
96552 5420834 | 645086 | olc | 645-1101435 | 1495 | >2200 36 300 | 111000 | 56.0 8800
96553 5420834 | 645086 | olc | 645-1101435 | 318 | >2200 | 502 21 14000 1.4 758
96554 5420799 | 645070 | olc | 645-1101435 | 1136 | >2200 | 2300 109 1700 19.2 | 11100
96555 5420799 | 645070 | olc | 645-1101435 | 1615 | >2200 | 70000 | 920 9700 41.4 | 38000
96556 5420799 | 645070 | olc | 645-1101435 | 979 | >2200 | 1959 360 1700 26.5 | 19500
96557 5420799 | 645070 | olc | 645-1101435 | 932 | >2200 | 12600 | 520 5400 38.7 | 31000
96558 5420799 | 645070 | olc | 645-1101435 | 960 | >2200 | 2900 102 1100 7.7 4400
96559 5420799 | 645083 | olc | 645-1101435 | 245 | >2200 | 821 85 900 8.8 4000
96560 5420799 | 645083 | olc | 645-1101435 | 660 | >2200 61 30 147 2.4 489
96561 5420780 | 645083 | olc | 645-1101435 | 1114 | >2200 | 10600 | 480 | 26400 | 72.9 | 55000
96562 5420799 | 645083 | olc | 645-1101435 | 1877 | >2200 | 5500 490 18000 | 21.1 | 34000
96563 5420780 | 645085 | olc | 645-1101435 | 214 1908 | 2600 80 117 3.8 1998

2023 LiDAR and INTERPRETATION

An airborne LiDAR and Imagery survery was flown by Eagle Mapping of Langley British
Columbia between August 3rd and September 4th of 2023 to attain detailed digital
elevation data for New Found Gold Corp. The Yellow Fox property fell within the
survey area, hence, the airborne data and expeditures were windowed out and given
to MEK. A total of 7.0 km? was flown over the Yellow Fox property. The survey
achieved a LiDAR point density of 8 pulses/m? resulting in a horizontal accuracy of +/-
0.30m, a vertical accuracy of 0.15m and a photo resolution of 20cm.

2025 WORK BY LOMIKO METALS

Work in 2025 has consisted of soil sampling and minor prospecting for the collection of
850 soil samples and 22 rock samples. Several highly prospective, multi-element (Au,
Sb, Ag, Zn, Pb, As, Fe, Mn. Ce) soil anomalies were generated with many new anomalies
trending roughly north-northeast, similar to that of the highly prospective regional
structures which also trend north-northeast. A new gold showing has been identified
through prospecting returning assays to 1.55g/t. This new gold showing is hosted
within a zone of carbonatized granite with finely disseminated pyrite. This new showing
is located in an area where little to no exploration work has been conducted.

YELLOW FOX ANTIMONY 10




POINTS OF INTEREST

e Numerous multi-element soil anomalies that remain unexplained

e New gold discovery of 1.55g/t Au

e Structurally controlled sulphide vein sets like that hosting the past producing
Beaver Brook Antimony Mine

e High-grade polymetallic veins

e Never diamond drill tested

e Large vastly underexplored property with lots of potential

e A structural interpretation of the LiDAR data, particularly the DEM data,
appears to show faults/shear structures with favourable orientations trending
northeast, east-west and northwest to north-northwest. There is possibly a
tighter density of structures in the north-central portion of licence 037936M.

In a 2022 paper written by H.Campbell, H. Sandemann, J. Organ and S. Norris of the
Department of Earth and Environmental Sciences, Dalhousie University, “two locations
of muscovite-pyrite altered boulders were located and studied south and southeast of
the Yellow Fox showing.” They write “there are two distinct paleo-channels, south and
west of the quarries that may have transported the boulders from the west, where they
could have been re-entrained and dispersed northward, or transported from the west by
eastward ice flow. Given the angularity and abundance of the Yellow Fox-type altered
boulders, and their tendancy to disintegrate, the source may be closer to the locations
where the boulders were found. Thus the most likely source for the boulders and cobbles
would be within 2-3 km radius, either south, southwest or west of the quarries.” That
could mean that the source of the boulders may be on the south-central portion of
licence 037936M.

1
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Current Research (2020) Newfoundland and Labrador Department of Natural Resources
Geological Survey, Report 20-1, pages 179-205

THE YELLOW FOX SHOWING: MONZOGRANITE-HOSTED, FRACTURE
RELATED ANTIMONY-SILVER-GOLD MINERALIZATION NEAR THE
EASTERN MARGIN OF THE MOUNT PEYTON INTRUSIVE SUITE,
CENTRAL NEWFOUNDLAND (NTS MAP AREA 2D/14)

H.A.L. Sandeman and C. Spurrell'
Mineral Deposits Section
'"Present address: Vale Canada Inc., 140 Nickel Road, Thompson, MN, Canada

ABSTRACT

The Yellow Fox showing is located 13 km southwest of Glenwood and was discovered in 2011 through grass-roots
prospecting. It is hosted by monzogranite of the Late Silurian to Early Devonian Mount Peyton intrusive suite, central
Newfoundland, and lies 1.8 km west of the inferred position of the southern extension of the Dog Bay Line. Sparse regional
bedrock outcrops and five mineral-exploration-industry trenches demonstrate that the showing is hosted by fractured, mus-
covite—pyrite—rutile-altered, medium-grained, plagioclase porphyritic, granophyric-textured biotite £ hornblende monzo-
granite. Muscovite—pyrite-rutile alteration occurs in an approximately 100-m-long by 30-m-wide, broadly north-trending
bleached and rusty zone, characterized by three distinct fracture sets. The most prominent fracture set is north-trending
(356°/80°E), occurs on a spacing of 5—20 c¢cm, and is accompanied by abundant muscovite and disseminated pyrite. A less
common, metre-spaced, east-striking (098°/84°S) fracture set is barren with respect to alteration minerals or mineralization,
whereas a third, weakly developed, north-northeast-trending (025°/86°E) fracture set, locally hosts a few narrow (<4 cm) stib-
nite—quartz—arsenopyrite veins. Arsenopyrite, mainly confined to vein margins, is extensively altered to supergene scorodite
and goethite. The muscovite—pyrite—rutile alteration and north-trending fractures are cut by the north-northeast-trending stib-
nite—quartz—arsenopyrite-veined fractures. Relative to unaltered monzogranite, the early muscovite—pyrite—rutile-associated
fracture set, and altered-host monzogranite samples, are typically moderately anomalous in As, Au, Ag, Sb, Pb and Cd. In con-
trast, the later stibnite—quartz—arsenopyrite-veined fractures and host rocks are strongly anomalous in all metals (Sb—As—Au—
Ag—Pb—Zn—Cd) and weakly anomalous in Cu. No appreciable enrichment in Mo or W is evident. The host monzogranite is
identical to other granites from the northeastern Mount Peyton intrusive suite, and all are weakly alkaline I- to A-type, biotite
+ hornblende monzogranites. Mineralization must be younger than the ca. 419 Ma age of the monzogranite, may be contem-
poraneous with other intrusion-hosted mineralization in the area, and is probably Early Devonian. Fracturing and mineral-
ization likely occurred in response to north-northwest-directed oblique sinistral Acadian deformation.

INTRODUCTION

The Yellow Fox showing is located 13 km southwest of
Glenwood in central Newfoundland (Figures 1 and 2; NTS
map area 2D/14), and was discovered in 2011 by Metals
Creek Resources Corporation during regional reconnais-
sance gold exploration (Reid and Myllyaho, 2012). The
showing is poorly exposed because of the thick glacial till
cover and the local landscape that consists mostly of gently
undulating, till-mantled boggy ground covered by black
spruce-dominated forest. Bedrock exposures are almost
entirely restricted to sparse low bedrock ridges, stream beds
and borrow pits constructed for forest-access road construc-
tion. The showing may be accessed using an all-terrain vehi-
cle via a network of old logging roads.

The Yellow Fox showing occurs in the northeastern sec-
tor of the Mount Peyton map area, near the juncture of four
1:50 000-scale NTS map areas (2D/14, 15, 2E/03, 04), and
4.5 km south of the Corsair and Hurricane prospects and
associated showings exposed along the Salmon River
(Tallman, 1990; Evans, 1996; O’Driscoll and Wilton, 2005;
Sandeman et al., 2017; Figure 2). The showing is hosted by
monzogranite of the Late Silurian to Early Devonian Mount
Peyton intrusive suite (MPIS) of central Newfoundland
(Blackwood, 1982; Dickson, 1993, 1996; Sandeman et al.,
2017), which is predominantly composed of gabbro, varying
to diorite, and intruded by less voluminous monzogranite.

The Yellow Fox showing is located approximately 1.8
km west of the projected position of the southern extension
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Figure 1. Simplified geological map of the Island of
Newfoundland showing the location of the Yellow Fox show-
ing and Figure 2 with respect to major geological terranes
and tectonic boundaries (after Colman-Sadd et al., 1990).

of the proposed terminal lapetan suture, termed the Dog Bay
Line (Currie, 1993; Piasecki, 1993; Williams, 1993;
Williams et al., 1993; Pollock et al., 2007). East of the
MPIS, and presumably constituting the most westerly unit
lying southeast of the Dog Bay Line, lies the Silurian, shal-
low-marine, locally calcareous and macro-fossil-bearing
siltstones and sandstones of the Indian Islands Group
(Williams et al., 1993; Currie, 1993, 1995; Dickson, 1993,
1996, 2006). These Silurian rocks are demonstrably imbri-
cated with both Middle Ordovician siltstones and sandstone,
and Late Ordovician graphitic, pyritic, and graptolitic shale
(Sandeman et al, 2018). Extensive mineral exploration
work in the area has identified a number of precious-metal-
and antimony-mineralized zones (Evans, 1996; Barbour and
Churchill, 1999, 2004; O’Reilly et al., 2010; Sandeman et
al., 2017, 2018) that may share common genetic attributes.

This report is a component of an ongoing, broader study
of precious-metal mineralization in, and around, the MPIS
and the Botwood and Indian Islands basins. These investi-
gations build upon the extensive mapping, geochronology,
biostratigraphy and lithogeochemical work of previous
investigators (Dunning, 1992, 1994; Dunning and Manser,
1993; Dickson, 1993, 1994, 2006; Boyce and Ash, 1994;
Dickson et al., 2000, 2007; O’Brien, 2003; Boyce and
Dickson, 2006; McNicoll et al., 2006), as well as the more
detailed mineral-deposit studies in the area (Evans and
Wilson, 1994; Evans, 1996; O’Driscoll and Wilton, 2005;
Squires, 2005; Lake and Wilton; 2006; Sandeman et al.,
2017, 2018), which collectively provide a framework upon
which a better understanding of the mineralized systems of
the region may be constructed. Herein, new field, petro-
graphic and lithogeochemical data, along with Mineral
Liberation Analysis (MLA) electron beam mapping and
imagery, are presented for rocks of the Yellow Fox mineral-
ized zone. Some of the data and observations presented
herein formed the B.Sc. thesis of C. Spurrell at Memorial
University of Newfoundland and Labrador (Spurrell, 2017).
These data are supplemented by lithogeochemical data for
granitic rocks of the region (Dickson and Kerr, 2007;
Sandeman et al., 2017) and are compared to available indus-
try-assessment report data for the showing (Reid and
Myllyaho, 2012) and to mineralized samples from the prox-
imal, MPIS diorite-hosted Salmon River prospects
(Tallman, 1990, 1991a; Hoffe and Sparkes, 2003; House,
2007a; Quinlan, 2009). The lithogeochemical data, along
with field and petrographic observations on the style and
character of alteration and additional observations from
industry-assessment reports, enhance our collective knowl-
edge-base for these intrusion-hosted precious-metal miner-
alized zones in the MPIS. These mineralized zones may
share common genetic attributes with numerous proximal
metasedimentary rock-hosted mineralized zones exposed
east of the MPIS (e.g., O’Driscoll and Wilton, 2005;
Squires, 2005). Mineral abbreviations used herein are from
Whitney and Evans (2010).

REGIONAL SETTING

The Yellow Fox showing lies in the northeastern Exploits
Subzone of the Newfoundland Appalachians, and occurs 1.8
km west of the projected position of terminal lapetan suture
termed the Dog Bay Line (Figures 1 and 2; Currie, 1993;
Piasecki, 1993; Williams, 1993; Williams et al., 1993;

Figure 2. (Figure on page 3) Geology of the northern part of the MPIS and adjacent country rocks illustrating the location of
the Yellow Fox showing and its proximity to the projected southern extension of the Dog Bay Line as based on the detailed air-
borne geophysical data of Moore and Smith (2003) and House and McConnell (2003). The red dots are precious-metal show-
ings taken from the Mineral Occurrence Database (MODS: gis.geosurv.gov.nl.ca/mods/mods.asp). Previous studied mineral-

ization refers to those discussed in Sandeman et al. (2017).
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Pollock et al., 2007). The rocks of the Exploits Subzone are
largely composed of a collage of Ordovician intra-oceanic
arcs, back-arcs and associated marine sedimentary rocks,
which in its eastern portion, have demonstrably been struc-
turally emplaced over metasedimentary basement rocks of
Ganderia (Colman-Sadd et al., 1990; Vaquero-Valverde et al.,
2006). Ordovician volcanic and marine sedimentary rocks of
the Exploits Subzone are both conformably and uncon-
formably overlain by the Siluro-Devonian overlap sequences
of the Badger, Botwood and Indian Islands groups (Evans et
al., 1993; Williams, 1993; Currie, 1993; Williams et al., 1995;
O’Brien, 2003). Collectively, these diverse units have been
intruded by Late Silurian to Early Devonian intrusive and
hypabyssal rocks of the Mount Peyton and Fogo Island intru-
sive suites (Dickson, 1996; van Staal et al., 2014).

The greater Mount Peyton area (Figures 1 and 2) has
been the subject of extensive governmental work, much of
which has been summarized by Dickson (1993, 1994, 1996,
20006), O’Driscoll and Wilton (2005), McNicoll et al. (2006)
and Dickson ef al. (2007), and the character and styles of
mineralization in the region have been documented by
Tallman (1991b), Tallman and Evans (1994), Evans (1996),
O’Driscoll and Wilton (2005), Squires (2005) and Lake and
Wilton (2006). Sandeman et al. (2017) provided an updated
summary of previous work on the MPIS, examined the age
and composition of components of the intrusive suite, and
presented new observations on the setting, petrography and
structure of the Hurricane and Corsair zones of the Salmon
River area and the Slip showing in the Neyles Brook quar-
ry; all of which occur in the granitoid rocks of the MPIS.
The relative age, lithostratigraphic and structural geology of
the rocks proximal to, and hosting, the Beaver Brook
Antimony Mine were discussed in Sandeman et al. (2018)
who provide the most recent geological summary of the
area. Previous investigations in the region pertaining to the
age, petrochemistry and contact relationships of the grani-
toid rocks are briefly reviewed below.

Baird et al. (1951) recognized that a large part of north
central Newfoundland is underlain by gabbroic and granitic
rocks that intrude adjacent sedimentary units. The first
1:250 000-scale map of the region (Williams, 1962) outlined
a large gabbro to diorite intrusion cut by monzogranite, out-
cropping to the south of the community of Norris Arm
(Figures 1 and 2). Williams (op. cit.) proposed a Devonian
age for these intrusive rocks, but stated that ‘the relation-
ships of these various rock types are not well known’. The
intrusive rocks were included in the regional 1:250 000-
scale map of Anderson and Williams (1970).

The earliest geochronological work on the MPIS yield-
ed imprecise K—Ar ages from widely separated localities
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ranging from 418 + 21 to 270 + 52 Ma (Wanless et al.,
1967). Subsequently, four granitic (s.l.) rocks of the MPIS
yielded a Devonian Rb—Sr whole-rock isochron age of 380
+ 30 Ma (Bell et al., 1977). Biotite from the gabbroic part of
the MPIS gave a conventional K—Ar date of 410 + 21 Ma
(Williams, 1962; Anderson and Williams, 1970). These
early radiometric data were supplemented by more precise
“Ar-*?Ar step-heating plateau ages for hornblende and
biotite, from a MPIS gabbro sample obtained near Norris
Arm that yielded overlapping plateau ages suggesting a 420
+ 8 Ma, latest Silurian age (Reynolds ef al., 1981). A recon-
naissance petrological study, focused mainly on the northern
part of the intrusive complex, outlined that the granitoid
rocks comprise a bimodal geochemical assemblage of gran-
ite and gabbro (Strong, 1977). Further petrological investi-
gations (Strong and Dupuy, 1982) demonstrated that the
intrusive suite comprises gabbro, formed from mantle-
derived melts, and granite (s.l.) that formed via anatexis
resulting from introduction of the mafic magma into the
crust. The few intermediate compositions noted (Strong and
Dupuy, op. cit.) were considered to have formed either by
magma mixing between the magmatic end-members and/or
contamination of the gabbroic magma by the surrounding
metasedimentary country rocks. Regional 1:50 000-scale
mapping of the Gander Lake map area at that time
(Blackwood, 1982) resulted in the introduction of the term
Mount Peyton intrusive suite for these diverse plutonic
rocks. Using combined magnetic, gravity and lake-sediment
geochemical data (Miller and Thakwalakwa, 1992), the
MPIS has been shown to comprise an inward-dipping ellip-
soidal gabbro to diorite laccolith intruded, and overlain, by
a relatively thin mantle of granite.

Much of the subsequent governmental and academic
work on the MPIS has been summarized by Dickson (1993,
1994, 1996, 2006) and Dickson et al. (2000) and comprised
regional geological mapping, lithogeochemical sample col-
lection and interpretation. An updated lithogeochemical
database for the MPIS was included in Dickson and Kerr
(2007).

The northern margin of the MPIS gabbro—diorite has
been demonstrated to have been emplaced into Late
Ordovician to Early Silurian Badger Group sedimentary
rocks and yielded a marginal hornfels that was metamor-
phosed at ~810°C and 2.5 kbar (Hynes and Rivers, 2002).
The western contact of the MPIS comprises a km-scale-
wide zone of migmatitic agmatite consisting of angular,
biotite psammite paleosome blocks engulfed by a granodi-
orite, to locally gabbro neosome that passes westward into
sandstone hornfels; the agmatite blocks and hornfels are
also interpreted as Badger Group strata (Dickson, 1993;
Dickson et al., 2000; O’Brien, 2003).
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East of the MPIS, and presumably constituting the most
westerly unit lying southeast of the Dog Bay Line, are the
Silurian, shallow-marine, locally calcareous and macro-fos-
sil-bearing siltstones and sandstones of the Indian Islands
Group (Williams et al., 1993; Currie, 1993, 1995; Dickson,
1996). Along its eastern margin, monzogranite of the MPIS
intrudes and generates hornfels in 5- to 20-cm-scale bedded
muscovitic sandstone and siltstone of probable Silurian age
(Dickson, 1993, 1996; Sandeman et al., 2018). These
Silurian rocks are demonstrably imbricated with both
Middle Ordovician siltstone and sandstone and Late
Ordovician graphitic and pyritic, graptolitic shale
(Sandeman ef al., op. cit.). The most recent field, lithogeo-
chemical and geochronological investigations (Sandeman et
al., 2017, 2018) have demonstrated that the MPIS exhibits
both intrusive, as well as faulted, contacts with southeast-
ward-lying rocks of the Indian Islands Group, and that most
of the gabbroic components of the MPIS were emplaced in
the interval ca. 425.4 to 421.1 Ma, whereas the granitic parts
intruded the gabbro—diorite from ca. 419.6 to 416.4 Ma.

PREVIOUS EXPLORATION

Exploration for gold in the Mount Peyton area began in
the late 1980s, accompanying an increase in the price of gold
bullion. Subsequent to the release of a government regional
lake-sediment survey that covered the Mount Peyton area
(Davenport and Nolan, 1989), Noranda Exploration Ltd.
staked claims and conducted reconnaissance prospecting and
regional-till and lake/stream-sediment sampling programs in
the northeastern parts of the MPIS (Tallman, 1990). These
investigations resulted in the discovery of a number of
bedrock gold showings along the Salmon River that yielded
up to 25.8 g/t Au and accompanying elevated Ag, Sb and As
(Tallman, 1990). In 1990, geophysics, trenching and dia-
mond drilling were completed and led to the discovery of a
number of north- and north-northeast-striking, moderately
east-dipping mineralized zones including the Hurricane and
Corsair prospects (Figure 2; Tallman, 1991a).

Modest exploration for gold in central Newfoundland in
the mid-1990s led to Forex Resources’ discovery of the Slip
showing (Figure 2) in 1993 (Clarke, 1996), hosted by the
MPIS and located off the TCH in the Neyles Brook Quarry.
Renewed gold exploration in 1999, particularly in the
Shirley Lake area (Figure 2; Evans and Dimmell, 2001;
Evans et al., 2001), revealed anomalous lake-sediment, soil
and bedrock samples defining a north-northwest-trending,
13.5-km-long corridor hosting gold, arsenic and antimony
occurrences known as ‘the Peyton’ or ‘the Mount Peyton’
trend (Tallman, 1991a; Evans, 1996; Evans and Dimmell,
2001; Evans et al., 2001; Hoffe and Sparkes, 2003; House,
2003, 2005, 2007a, b).

From 2002 to 2007, Rubicon Minerals explored the
northeastern parts of the MPIS and completed a regional pro-
gram including detailed (75-m- and 50-m-line spacing), hel-
icopter-borne aeromagnetic programs, soil-sampling surveys
and two diamond drill-holes on the Hurricane prospect
(Figure 2; House and McConnell, 2003; Moore and Smith,
2003; House 2007a). Rubicon Minerals also supported a
B.Sc. (Hons.) thesis (Hoffe, 2003) encompassing a detailed,
multi-element lithogeochemical and geochronological exam-
ination of the phases of the MPIS at the Slip showing, results
of which are summarized in a mineral-exploration industry
assessment report (Hoffe and Sparkes, 2003) and a recent
current research report (Sandeman et al., 2017). Further
work in the area around the Slip showing (Quinlan, 2009)
resulted in the discovery of two additional bedrock and float
occurrences, for which fourteen samples returned anomalous
gold values ranging from 12 to 12 880 ppb. Those samples
consisted of mineralized quartz veins, or quartz vein breccia
hosted by gabbro of the MPIS (Quinlan, op. cit.).

To the east and southeast, along the margin of the
MPIS, many new mineralized zones consisting of epither-
mal quartz veins, vein breccias and disseminated mineral-
ization in altered wall rock were concurrently discovered
and explored (Figure 2; Barbour and Churchill, 1999, 2004;
O’Reilly and Churchill, 2004; O’Driscoll and Wilton, 2005;
Squires, 2005; House, 2005, 2007a, b; O’Reilly ef al., 2008,
2010; Quinlan, 2013). Results outlined northeast-trending
zones of veining, silicification and brecciation with dissem-
inated and vein-hosted Au—Ag—As—Sb mineralization at the
Mustang and Piper zones (Barbour and Churchill, 2004) as
well as epithermal, vuggy and chalcedonic vein- and vein-
breccia-related Au + As + Ag = Sb + Mo mineralization at
the O’Reilly showing (O’Reilly et al., 2008, 2010). A num-
ber of other discoveries including the Cherry Hill, Clarkes
Brook East and Contact showings (Squires, 2005; O’Reilly
et al., 2008) all appear to have metal associations similar to
those described above. The Yellow Fox showing (Figure 2)
was discovered about this time through grass-roots
prospecting by Metals Creek Resources in May 2011 (Reid
and Myllyaho, 2012). Prospecting yielded a number of grab
samples having anomalous metals and yielding a maximum
gold assay value of 59.41 ppm Au with coincident elevated
silver (15.34 ppm Ag) and weakly anomalous antimony (19
ppm Sb) and copper (531 ppm Cu) (Reid and Myllyaho,
2012). The positive results from prospecting resulted in 2
reconnaissance B-horizon soil-sampling lines; however,
soil-sampling results were poor, yielding <5 ppb Au. The
company then excavated six east—west-oriented trenches
and completed channel sampling in 5 of these trenches.
Results were positive, yielding up to 306 ppb Au over 26.82
m, however, there has been no further work on the property
and the trenches reclaimed in mid-summer 2017.
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GEOLOGY OF THE YELLOW
FOX SHOWING

Bedrock exposures near the showing are rare and are
confined mainly to ground disturbances associated with for-
est-access road construction. The showing was exposed dur-
ing the excavation of 6 east—west-oriented trenches, labelled
from north to south Trench 1 through 6 (only 5 are shown in
Figure 3). The northern 4 trenches exposed fractured, medi-
um-grained, generally equigranular and locally plagioclase
porphyritic monzogranite that is either reddened, or
bleached and rusty (Figure 3). The few proximal outcrops of
Mount Peyton monzogranite typically lack the pervasive
fracturing and the reddening or bleaching (Plate 1A) noted
at the Yellow Fox showing (Plate 1B-D). The monzogranite
underlying the western margins of the 4 northern trenches is
the least altered and exhibits minor reddening and fracturing

(Plate 1B); however, the remainder of the exposed monzo-
granite is variably bleached, fractured and rusty and con-
tains sparse disseminated pyrite. The most intensely altered
monzogranite occurs along the central, north—south axis of
the trenches and consists of strongly bleached, fractured and
rusty, muscovite—pyrite—rutile-altered monzogranite (Plate
1C). At the northernmost Trench 1, the intensely mus-
covite—pyrite-rutile-altered monzogranite is cut by a 4-cm-
wide, north-northeast-trending stibnite—quartz—arsenopyrite
vein (Plate 1D).

Examination of the bedrock in the trenches revealed
three distinct fracture sets (Plate 2). These include: 1) wide-
ly spaced, roughly east-west barren fractures; 2) north—
south trending, 5 to 20 cm-spaced fractures in muscovite—
pyrite-rutile-altered monzogranite and; 3) sparse, north-
northeast-trending, locally stibnite—quartz—arsenopyrite-
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Figure 3. Geological sketch map of the Yellow Fox showing as determined through examination of the industry trenches (Reid
and Myllyaho, 2012). Also shown are sample locations (except HS16-0174; see Figure 2), the approximate distribution of

alteration and, a few representative, salient fractures.
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Plate 1. Representative photographs. A) Relatively fresh, unaltered plagioclase porphyritic monzogranite (sample HS16-
0174: UTM's 645117E, 5421989N); B) Reddened, weakly plagioclase porphyritic monzogranite at the western margin of
Yellow Fox Trench 2 (Figure 3: sample station HS16-019A4: UTM's 654048E, 5420802N), C) Bleached and fractured, mus-
covite—pyrite— rutile altered monzogranite from Yellow Fox Trench 3 (Figure 3: sample station HS16-0184: UTM's 645081E,
5420793N),; D) The <4-cm-wide stibnite—quartz—arsenopyrite vein cutting bleached monzogranite at the discovery outcrop in
Trench 1 (Figure 3: sample station HS16-020B: UTM s 645069E, 5420827N ). Marker and pen magnet in photos point north.

veined fractures. An equal area stereographic projection of
the poles to fractures (Figure 4) indicates that the barren
(green) fractures have a mean orientation of 98°/84°S, the
muscovite—pyrite—rutile-mineralized fractures (orange) have
a mean orientation of 356°/80°E and, the stibnite—quartz—
arsenopyrite-veined (red) fractures have a mean orientation
of 25°/86°E.

SAMPLING AND ANALYTICAL METHODS

Nineteen bedrock samples were collected from the
Yellow Fox trenches and showing area for petrographic and
lithogeochemical analysis and include: 4 samples of rela-
tively fresh monzogranite from the peripheries of the indus-
try trenches and one from 1 km north of the showing
(including 2 duplicate analyses); 11 samples of altered and
fractured, muscovite—pyrite—rutile-altered monzogranite
from the trenches and; 3 samples of strongly altered monzo-

granite cut by a stibnite—quartz—arsenopyrite-bearing vein
(Table 1). Of the nineteen samples, three were selected for
further detailed petrographic analysis using mineral libera-
tion analysis-scanning electron microscopy (MLA-SEM).
These three samples were selected to illustrate the miner-
alogical changes in the granite in and around the mineralized
zone as they span the complete spectrum of fresh or deuter-
ically altered through strongly hydrothermally altered mon-
zogranite marginal to the stibnite vein.

All samples were crushed and processed for standard
lithogeochemistry and were analyzed at the Government of
Newfoundland and Labrador, Department of Natural
Resources Howley Building Laboratory using: Inductively
Coupled Plasma-Optical Emission Spectrometry (ICP-
OES) for the major elements and selected trace elements
including Ag and Inductively Coupled Plasma Mass
Spectrometry (ICP-MS) for selected trace elements and the
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Plate 2. Photograph looking north, showing the distribution
and disposition of barren and mineralized fracture sets at
the Yellow Fox showing. Illustrated are the planes of barren
fractures (green; 98°/84°E), muscovite—pyrite—rutile-min-
eralized fractures (Orange; 356°/89°E) and stibnite—
quartz—arsenopyrite-veined fractures (Red; 25°/86°E).
Note the cut channel samples that parallel to the barren,
east—west fracture system.

rare-carth elements (REE). Gold, Cd, Bi, As and Sb were
determined via Instrumental Neutron Activation Analysis
(INAA) at Bureau Veritas Laboratories (www.bvlabs.com:
formerly Maxxam Analytics) using their standard tech-
niques. Fluorine was analyzed using an ion specific elec-
trode. Complete analytical methods are given in Finch et al.
(2018) and Sandeman et al. (2017) and the data are pre-
sented in Table 1. These lithogeochemical data are com-
pared to regional samples of fresh monzogranite from the
northern part of the MPIS in order to examine their petro-
genesis, and to altered and mineralized rocks of the suite for
a comparison of the metal enrichment signatures of the
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Figure 4. Lower hemisphere, equal-area plot of poles to
barren, muscovite—pyrite—rutile-altered, and stibnite—
quartz—arsenopyrite-veined fractures.

mineralized zone (Tallman, 1991a; Evans, 1996; Evans and
Dimmell, 2001; Evans et al., 2001; Hoffe and Sparkes,
2003; House, 2003, 2005, 2007a, b; Dickson and Kerr,
2007; Sandeman et al., 2017). Strongly elevated Sb in the
stibnite—quartz—arsenopyrite-veined monzogranite resulted
in gamma-ray spectral interference in the INAA data that
yielded unresolvable Au in those analyses. Hence, the min-
eral-exploration fire assay data for gold (Reid and
Myllyaho, 2012) are more useful for interpretation.

One representative sample each of reddened monzo-
granite, bleached muscovite—pyrite—rutile-altered monzo-
granite and the stibnite—quartz—arsenopyrite-veined monzo-
granite were selected for qualitative mineral chemical analy-
sis and MLA imaging of thin sections using a FEI MLA
650FEG(2) Scanning Electron Microscope (SEM) at
Memorial University of Newfoundland and Labrador Micro
Analysis Facility (MUN MAF-IIC). Qualitative analyses
were completed with high throughput Energy-dispersive X-
ray spectroscopy (EDX) detectors from Bruker (Bruker
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Mineral Assay Gun. https://www.mun.ca/creait/). The pur-
pose of this SEM work was to map the electron energy spec-
tra of the thin section in order to identify all minerals; in par-
ticular, fine-grained alteration phases, and to visually illus-
trate diagnostic mineral textures.

A cut representative piece of each of the 19 rock sam-
ples were analyzed using visible/infrared reflectance spec-
trometric (VIRS) analysis collected on and exported from a
TerraSpec® Pro spectrometer. Spectral and mineral identifi-
cation of the VIRS data were determined using the TSG™
Pro software. A summary of this method and its applications
at the Geological Survey of Newfoundland and Labrador are
presented in Kerr ef al. (2011). Each sample was scanned at
least twice in order to test analytical reproducibility. Within
the dataset (Table 2), an estimate of the relative proportions
of the two dominant mineral phases within each sample are
provided (wt. % mineral 1 and wt. % mineral 2), along with
a corresponding error related to the overall “fit” of the sam-
ple spectra relative to reference spectra in the TSG™ Pro
spectral database (Error sTSAS). The lower the error value,
the better the match with the reference spectra. Because of
the nature of the alteration, absorption features in the short-
wavelength-infrared region (~1300-2500 nm) characteristic
of the white mica minerals are the main topic of interest.
Table 2 also provides the calculated depth of wavelength
troughs for three characteristic (1400, 1900 and 2200 nm)
absorption features of white micas along with the position of
the 2200 nm absorption feature and estimates of the illite
spectral maturity (ISM (H,0)) for the samples.

ANALYTICAL RESULTS

VIRS ANALYSIS

Whereas all samples have muscovite as a significant
hydrous mineral, six analyses from three specific samples
contain additional hydrous minerals. The representative,
regional monzogranite sample HS17-017A contains mus-
covite with chlorite and siderite. The marginal, weakly
altered and reddened monzogranite HS16-019A is charac-
terized by a phengitic white mica. The stibnite—quartz—
arsenopyrite-veined monzogranite sample HS17-020B
yielded two analyses with only muscovite and two with both
muscovite and chlorite (Table 2). A plot of illite spectral
maturity (Doublier ef al., 2010) or ISM(H,O) vs. the white
mica ~2200 nm spectral trough position (Duke, 1994) out-
lines the distinction between the muscovite only, vs. mus-
covite—chlorite- or phengite-bearing samples (Figure 5A).
On this diagram, the six differing analyses with spectral
trough positions at >2205 nm have lower spectral maturity,
corresponding lower crystallinity, and hence plot to the right
of the remainder of the samples. Similarly, the six distinct
analyses have relatively small ~2200 vs. ~1900 nm troughs,

corresponding with low ISM (H,0), and fall on a distinct
array from the remainder of the analyses (Figure 5B). These
observations indicate that the VIRS analyses of the least
altered monzogranite sampled less crystalline white mica
that was formed at lower temperatures than those in the
muscovite only samples. The two analyses of the stibnite—
quartz—arsenopyrite-veined sample (HS16-020B), located
off the main trend, contain spectral signatures that are dom-
inated by broad water features coupled with weak 2200 nm
absorption troughs. Such analyses may result from spectral
interference from the vein quartz and chlorite present with-
in the sample.

PETROGRAPHY AND MLA DATA

On the basis of field, VIRS and petrographic observa-
tions, the samples are grouped into: 1) regional, background,
locally deuterically altered fresh monzogranite; 2) weakly
hydrothermally altered monzogranite distal (>25 m) from
the central axis of the Yellow Fox fracture and vein systems
(HS16-019A); 3) muscovite—pyrite—rutile-altered monzo-
granite lying within the fractured and veined area (HS16-
018A) and; 4) stibnite—quartz—arsenopyrite-veined monzo-
granite at the core of the fracture systems (HS16-020B). All
sample locations (Table 1; Figures 2 and 3) are recorded in
NAD27 datum and UTM zone 21. Below we discuss the
petrographic characteristics of the monzogranite with
respect to the collective petrography of all samples, but in
particular, with reference to the three samples chosen for
MLA analysis.

Regional, Fresh Monzogranite (e.g., HS16-017A)

Sample HS16-017A is a representative plagioclase por-
phyritic, fine- to medium-grained, granophyric-textured,
hornblende—biotite monzogranite obtained from a small bor-
row pit on the north side of the Yellow Fox access road, ~1
km north of the showing (Figure 2). Plagioclase phenocrysts
are variably saussuritized, although lamellar twinning is
locally preserved (Plate 3A, B). Mafic mineral phases are
sparse, forming small clots in what are interpreted as
miarolitic cavities between the quartz and feldspars that
include: variably chloritized, subhedral, bladed biotite, sub-
hedral dark green hornblende with sparse anhedral grains of
intergrown magnetite and ilmenite, and minor euhedral zir-
con and subhedral commonly accicular apatite (Plate 3B).

Weakly Altered Reddened Monzogranite
(e.g., HS16-019A)

Sample HS16-019A is a representative, incipiently
altered, medium-grained, plagioclase porphyritic, grano-
phyric-textured biotite-hornblende monzogranite of the
MPIS that was collected from the west end of Trench 2
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Table 1. Lithogeochemical data for samples from the Yellow Fox showing. Negative numbers indicate detection limits. Large negative numbers for INAA
data further indiate significant spectral interference

Sample CS17-001 CS17-002 CS17-003 CS17-004 CS17-005 CS17-006 CS17-007 CS17-008 HS16-017A
Lab Number 8941276 8941277 8941278 8941279 8941339 8941281 8941338 8941282 8941124
rock-type Mu-Py-Rt Mu-Py-Rt Mu-Py-Rt Stbn-Qtz-Apy- Stbn-Qtz-Apy- Mu-Py-Rt Mu-Py-Rt Mu-Py-Rt

altered mzgn  altered mzgn altered mzgn veined mzgn veined mzgn altered mzgn altered mzgn altered mzgn  Fresh mzgn
UTM_East 645147 645143 645151 645151 645155 645151 645155 645151 645117
UTM_North 5421026 5421015 5421014 5421014 5421050 5421014 5421050 5421014 5421989
zone 21 21 21 21 21 21 21 21 21
datum NAD 27 NAD 27 NAD 27 NAD 27 NAD 27 NAD 27 NAD 27 NAD 27 NAD 27
Mg# 12.55 16.05 18.56 3.05 4.00 14.54 19.06 13.98 20.58
SiO2 (wt.%) 78.20 78.41 78.35 61.59 67.94 77.48 76.14 78.11 73.60
AL O3 11.60 11.85 12.27 8.40 9.87 12.08 12.78 12.35 12.71
Fe,037 2.61 2.16 1.85 7.31 6.34 2.17 2.34 2.13 235
Fey03 1.21 0.71 NA 0.65 1.93 0.70 0.60 0.85 0.68
FeO 1.26 1.31 NA 5.99 3.97 1.32 1.57 1.15 1.50
MgO 0.19 0.21 0.21 0.12 0.13 0.19 0.28 0.17 0.31
CaO 0.04 0.06 0.05 0.03 0.03 0.03 0.05 0.04 0.13
Na,O 0.07 0.07 0.05 0.04 0.05 0.06 0.04 0.06 3.02
K20 3.63 3.67 3.59 2.56 3.07 3.82 3.58 3.82 4.70
TiO, 0.214 0.209 0.231 0.160 0.177 0.216 0.240 0.174 0.228
MnO 0.055 0.026 0.013 0.030 0.027 0.025 0.085 0.038 0.020
P20s 0.016 0.018 0.020 0.014 0.014 0.016 0.023 0.019 0.024
LOI 1.93 2.39 2.67 10.86 7.93 2.28 2.69 2.18 1.67
Total 98.55 99.08 99.31 91.11 95.59 98.36 98.23 99.10 98.76
F (ppm) 491 500 547 379 435 570 547 552 381
Cr 6 7 5 4 14 6 5 5 6
Zr 177 200 223 168 173 230 283 152 231
Ba 498 387 140 304 389 396 124 384 402
Be 1.8 1.8 2.7 1.9 2.0 2.0 2.8 2.1 2.5
Sc 7.2 7.3 7.5 4.9 6.1 7.3 8.4 6.7 8.4
Ag 0.1 0.2 0.2 5.1 1.2 1.3 -0.1 0.2 -0.1
As 75 2463 29 39700 33000 3815 189 1655 6
Cd 0.2 22 0.1 206.2 1232 4.1 0.3 0.9 -0.1
Co -5 -5 -5 -5 -5 -5 -5 -5 2
Cu 22 20 18 480 140 63 10 16 3
Li 11.9 13.7 34.1 12.8 11.7 11.1 35.1 10.8 11.9
Mn 428 200 98 236 206 194 656 291 158
Ni 4 3 3 8 7 3 4 3 5
Pb 346 262 47 19800 8642 484 63 619 5
Rb 108 111 137 89 115 126 154 125 176
\4 8 8 8 6 6 8 9 5 7
Zn 85 286 87 10600 4005 424 29 62 22
Ga 17 18 17 13 15 18 19 20 21
Ge 1.5 1.6 1.4 1.3 -1.0 1.7 1.5 1.1 6.3
Sr 3 4 101 9 6 3 5 2 27
Y 48 58 53 33 38 51 54 60 87
Nb 9 9 11 8 9 9 10 9 11
Mo 4.6 3.4 -2.0 2.2 -2.0 2.3 34 -2.0 -2.0
Sn 14 20 8 14 14 16 4 21 4
Cs 1.5 1.5 2.1 1.5 1.6 1.7 1.9 1.7 1.8
La 36.82 34.97 39.07 3339 34.87 38.44 55.49 47.27 86.29
Ce 82.06 81.10 90.41 63.88 68.99 86.42 107.30 99.21 115.67
Pr 9.44 9.35 10.67 8.54 8.70 10.34 12.73 11.95 22.18
Nd 35.70 36.85 41.43 31.99 34.31 38.69 46.83 45.53 84.98
Sm 7.95 8.62 9.12 7.33 7.67 8.25 10.34 9.75 17.68
Eu 0.77 1.06 0.86 0.54 0.65 0.67 1.02 1.01 1.57
Gd 8.48 9.73 9.66 6.42 7.17 9.10 10.17 10.11 16.71
Tb 1.45 1.66 1.65 1.04 1.19 1.53 1.72 1.79 2.52
Dy 8.52 10.53 10.00 6.14 6.98 9.54 10.37 11.02 14.87
Ho 1.67 2.12 2.06 1.29 1.45 1.92 2.03 2.14 2.90
Er 5.13 6.57 6.14 3.76 4.25 5.90 6.28 6.67 8.77
Tm 0.77 0.97 0.91 0.57 0.63 0.83 0.92 1.02 1.13
Yb 5.11 6.28 5.84 3.70 4.50 5.58 6.13 6.55 8.03
Lu 0.75 0.96 0.96 0.56 0.68 0.97 0.99 1.02 1.21
Hf 5.58 6.23 7.02 4.53 5.39 6.91 8.46 5.06 7.42
Ta -1.0 -1.0 -1.0 3.0 -1.0 -1.0 1.5 -1.0 0.7
W 1.7 2.8 -1.0 3.0 5.5 3.6 1.5 3.1 -1.0
Tl -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.5
Bi -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
Th 16.68 17.74 18.72 12.67 13.66 18.32 19.00 20.64 18.84
U 4.21 4.43 4.16 5.92 3.52 3.60 4.73 5.08 3.84
Sb 208 98.6 352 40700 13300 290 40.2 524 1.6
Br -1 -1 -1 -320 -87 -1 -1 -1 -1
Au (ppb) 38 692 5 -800 =271 294 153 317 -1
Se -2 -2 -1 -130 -37 -4 -1 -9 -1
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Table 1. Continued

HS16-018A HS16-018B HS16-019A HS16-019A DUP HS16-019B HS16-019C HS16-020A HS16-020B HS17-019 HS17-020B
8941174 8941175 8941125 8941130 8941176 8941177 8941178 8941179 8941302 8941304
Mu-Py-Rt Mu-Py-Rt Mu-Py-Rt Mu-Py-Rt Mu-Py-Rt Stbn-Qtz-Apy-
altered mzgn  altered mzng Reddened mzgn Reddened mzgn altered mzgn altered mzgn altered mzgn veined mzgn Fresh mzgn  Fresh mzgn
645081 645092 654048 654048 645062 645086 645066 645069 639502 645980
5420793 5420789 5420802 5420802 5420807 5420804 5420836 5420827 5408229 5424008
21 21 21 21 21 21 21 21 21 21
NAD 27 NAD 27 NAD 27 NAD 27 NAD 27 NAD 27 NAD 27 NAD 27 NAD 27 NAD 27
22.50 13.94 15.24 16.25 14.20 14.75 15.71 1.21 14.21 15.78
78.39 75.80 73.45 73.97 77.04 74.53 76.41 48.66 73.00 73.15
11.92 12.18 12.70 12.56 12.28 12.94 13.70 5.87 12.76 12.18
1.84 3.48 1.91 1.89 2.46 2.98 2.42 15.37 2.73 2.31
0.15 NA 0.72 0.68 0.31 1.03 0.18 4.86 1.73 0.81
1.52 NA 1.07 1.09 1.93 1.76 2.01 9.46 0.90 1.35
0.27 0.28 0.17 0.19 0.21 0.26 0.23 0.10 0.23 0.22
0.05 0.07 0.18 0.20 0.20 0.04 0.06 0.04 0.36 0.50
0.05 0.31 3.01 2.97 0.06 0.16 0.17 0.05 3.38 3.21
3.44 3.70 4.99 4.91 3.67 4.82 3.70 1.80 4.90 4.81
0.218 0.227 0.222 0.218 0.229 0.231 0.252 0.115 0.304 0.232
0.013 0.022 0.042 0.041 0.101 0.017 0.022 0.037 0.029 0.029
0.018 0.026 0.026 0.026 0.017 0.029 0.027 0.012 0.043 0.025
2.17 2.87 1.34 1.27 2.01 2.36 2.65 21.34 1.96 1.47
98.38 98.97 98.04 98.25 98.26 98.36 99.63 93.39 99.70 98.12
738 963 380 401 832 866 596 280 81 137
6 -1 4 5 4 4 9 3 8 6
217 219 224 216 245 250 223 104 300 216
121 349 446 439 391 360 105 192 512 541
2.1 3.1 2.8 2.7 2.0 2.9 3.2 1.7 1.9 2.1
7.7 9.4 8.6 8.7 8.7 9.1 9.2 3.9 7.5 7.9
0.3 -0.1 -0.1 -0.1 -0.1 0.3 0.1 2.5 -0.1 -0.1
98 17 4 4 31 15 124 129000 4 3
0.6 0.1 -0.1 -0.1 0.5 0.1 0.5 717.5 -0.1 -0.1
-1 2 2 2 3 1 1 7 -5 -5
12 16 2 3 18 12 7 135 8 3
27.1 23.8 12.8 12.9 10.8 20.6 279 11.6 322 14.7
112 169 336 336 817 136 181 181 226 226
4 5 4 4 5 4 4 14 4 4
33 50 4 4 529 57 132 29970 16 11
130 159 209 210 110 176 142 60 203 170
8 8 8 7 8 8 8 4 10 9
86 61 22 22 110 52 66 97 58 31
16 19 18 18 17 18 20 9 17 16
33 32 3.7 4.5 4.5 3.8 5.0 4.4 -1.0 1.3
5 19 31 29 4 32 6 5 31 49
44 65 59 60 66 62 69 36 52 35
13 11 10 9 13 13 15 8 13 13
2.7 42 2.0 -2.0 2.9 3.6 33 2.1 -2.0 -2.0
5 8 5 5 14 9 5 14 7 4
2.1 0.7 2.5 2.7 1.5 2.6 3.1 1.2 6.2 4.4
40.64 57.20 48.97 46.67 57.65 51.86 66.98 28.93 34.70 24.87
89.68 118.26 101.17 97.56 109.76 113.16 140.46 55.78 77.70 56.61
10.11 13.77 12.69 12.97 14.90 12.12 16.02 7.07 9.38 6.63
37.42 51.02 48.38 50.86 57.08 44.86 59.57 25.96 35.49 25.10
7.94 10.11 10.56 11.23 13.49 8.97 12.52 5.59 8.25 6.26
0.76 0.87 1.12 1.14 1.71 0.72 1.16 0.44 0.96 0.87
8.41 10.68 10.07 10.62 13.84 9.15 12.27 6.07 8.32 6.16
1.40 1.93 1.71 1.80 2.18 1.60 2.03 0.98 1.44 1.08
8.30 11.88 10.69 11.27 12.52 10.60 12.52 6.42 9.19 6.78
1.66 2.44 2.08 2.19 2.54 2.18 2.50 1.31 1.91 1.42
4.92 7.46 6.32 6.89 7.40 6.71 7.59 4.06 5.93 4.23
0.73 1.11 0.87 0.95 1.07 0.96 1.08 0.57 0.86 0.64
4.60 7.12 6.07 6.56 6.97 6.54 6.89 3.69 5.73 4.44
0.75 1.17 0.88 1.00 1.07 0.96 1.08 0.58 0.95 0.67
6.92 7.09 6.80 7.24 7.83 7.86 7.11 3.14 7.89 6.40
1.9 1.4 -0.5 -0.5 1.9 2.0 1.9 2.9 2.5 2.5
22 1.5 -1.0 -1.0 3.0 2.4 3.9 3.9 33 -1.0
-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.1 -0.1
-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
17.51 17.18 18.28 18.19 18.41 19.47 19.83 8.84 17.07 17.15
3.63 4.55 4.29 4.75 4.61 4.61 491 6.27 4.79 4.41
46.7 40.8 6.1 6.6 30.6 38.1 48.7 22800 0.9 1.3
-1 -1 -1 -1 -1 -1 -1 -80 -1 -1
24 6 -1 -1 8 5 87 -510 -1 -1
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Figure 5. VIRS data for the Yellow Fox showing. A) lllite spectral maturity (ISM) H,O vs. white mica composition (Al-OH);
B) ISM H,O vs. the depth of the 1900 nm absorption trough. ISM (H,0) corresponds to the depth of the 2200 nm trough/1900
nm trough (Doublier et al., 2010).

Vi 3% ol &g m=d AW ik
Plate 3. Representative photomicrographs. A) Fresh, regional monzogranite sample HS16-017A under plane-polarized light
(ppl); B) Same field of view of monzogranite sample HS16-017A4 under crossed nicols, C) Weakly altered, reddened monzo-
granite sample HS16-0194 under ppl; D) Same field of view of monzogranite sample HS16-019A under crossed nicols. Key:
Qz—quartz; PI-Plagioclase; Or—orthoclase; Bt (Chl)—chloritized biotite; gr—granophyric texture.
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(Figure 3; Plate 3C). The rock is reddened, and plagioclase
crystals are a pale yellow-green. Plagioclase grains locally
appear to preserve oscillatory zoning, which is represented
by inner zones preferentially enriched in a fine-grained
intergrowth of albite—quartz—muscovite, and outer zones
characterized by muscovite alone (Figure 6; Plate 3C, D).
Ferromagnesian silicates (biotite and hornblende) occur as
inter-grown clots, and are variably altered to chlorite + mus-
covite + rutile + goethite with common euhedral cubic zir-
con. The rock consists of 20.3 volume %, subhedral, vari-
ably sericitized and saussuritized plagioclase phenocrysts
(<4 mm) and 37.9 % anhedral quartz grains that commonly
form granophyric and locally myrmekitic intergrowths with
alkali feldspar (21.8%), which constitutes much of the
reminder of the rock (Plate 3D; Figure 6). A proportion of
the plagioclase, likely more calcic end-members, as well as
orthoclase forming the granophyric texture, are variably
replaced by muscovite (13.8%), albite and chlorite (2.0%).
White mica alteration is minimal in comparison to samples

A

ChlEMusRu
G E 07N
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zonediR|
2\

HS16-019A

Modal Mineralogy - H516-019A GXMAP

Name Area + Pinels
Quartz 3I7.87% 28110884
Orthoclase 21.75% 16145375
Albite: 20.26% 15041756
Muscovite 1381% 10250979
Perthite 3.80% 2819281
Chilorite 1.85% 1373450
Rutile 0.21% 155399
Fg_nutil+slicate 0.11% 83684
Goethite 0.08% 61498

0.08% 58076
Fg_ntil+Fe-ox 0.04% 32538

Zircon 0.04% 30176
Apatite 0.04% 28348
Aluminosiicate 0.01% 8495
Plagioclase 0.01% 7664
Monazite 0.01% 6014

0.01% 4626
0.01% 4254
0.01% 3806
0.00% 2445
0.00% 1477
0.00% 812 15 0.00%
0.00% 532 3 0.00%

more proximal to the fracture system. Accessory phases
include euhedral zircon, subhedral apatite and less common
anhedral monazite and xenotime (Figure 6)

Bleached, Fractured Pyritic Monzogranite
(e.g., HS16-018A)

Sample HS16-018A represents an altered, fractured
monzogranite of the MPIS obtained from Trench 3, approx-
imately 12 m west of the axis of the central, fractured and
pyritic zone (Figure 3). This sample is an intensely mus-
covite-altered, medium-grained, plagioclase-phyric, gra-
nophyric-textured monzogranite with essentially all primary
feldspar phases (plagioclase and orthoclase) entirely
replaced by muscovite. Figure 7 illustrates that a number of
the muscovite-dominant patches have partial rectangular
outlines reflecting pseudomorphed plagioclase phenocrysts
and, that what was primary granophyric texture is now inter-
growths of muscovite lamellae in quartz (Plate 4A, B).

det W WD mag ]
BSED | 25. mm  135mm 5%

1mm D
Memotial Univ MLA 630 FEG

Figure 6. Electron microprobe MLA imagery for sample HS16-019A4 composed of reddened, weakly altered monzogranite
from the western margin of Yellow Fox Trench 2. A) Backscattered electron (BSE) image of the thin section; B) MLA false
colour image of the mineralogy of the thin section, showing the locations of image D, C) Coloured legend for B; D) BSE image
of a sericite-altered plagioclase phenocryst with a rutile and goethite inclusion, surrounded by granophyric intergrowths of
orthoclase and quartz. Key: Qtz—quartz; Chl-chlorite; Mu—muscovite; Apy—arsenopyrite; Pl-plagioclase; Ab—albite;
Goe—goethite; Or—orthoclase; Rut—rutile; gr—granophyric texture; Zrn—zircon.
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Name Pixels Particles Area % Weight %
3048428 242
16678682 244
404659 43
208273 1
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364193100
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18619 167571.00
17876 160884.00
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Albke
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Orthoclase

Chiorite-Mg 1714 20 0.00 % 0.00 % 1542_5 LS

Area Microns
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Aluminosiicate 4392 54 0.01% 0.01% 33528
Fg_nutil+Fe-ox 1821 3 0.00 % 0.01% 16385‘0

HRW wn
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Figure 7. Electron microprobe MLA imagery for sample HS16-0184 composed of bleached and fractured, muscovite—pyrite—
rutile-altered monzogranite from near the centre of Yellow Fox Trench 3. A) BSE image of the thin section;, B) MLA false-
colour image of the mineralogy of the thin section showing subhedral spongy pyrite and the location of image D; C) Coloured
legend for B; D) BSE image of a anhedral rutile accompanying muscovite and quartz and cubic zircon. Key: Qtz—quartz;
Chl—chlorite; Mu—muscovite;, Py—pyrite; Goe—goethite, Rut—rutile; Zrn—zircon; Mon—monazite; Xen—xenotime.

Patches dominated by chlorite intergrown with muscovite +
rutile + zircon + goethite + xenotime (Figure 7D) are inter-
preted to represent the remnants of hydrothermally altered,
intergrown primary biotite-hornblende—ilmenite—mag-
netite—zircon, such as those noted in miarolitic cavities in
less strongly altered samples (e.g., see HS16-017A:
Sandeman et al., 2018). In fresh samples, the ferromagnesian
phases typically occur in small intercrystal druses or
miarolitic cavities (Sandeman et al., 2017). The rock consists
of 63.3 wt. % quartz, 34.6% muscovite and <1% embayed
and inclusion-rich pyrite with trace goethite, rutile and chlo-
rite. All other phases identified in MLA analysis are in abun-
dances of <0.1% (Figure 7). This sample also contains trace
chalcopyrite, sphalerite, pyrrhotite, calcite and siderite.

Strongly Altered Stibnite-veined
Monzogranite (e.g., HS16-020B)

Sample HS16-020B is a sample of strongly altered,
locally stibnite-veined monzogranite from Trench 1 (Figure
3) at the Yellow Fox showing. The wall rock to the vein is a
chalky-orange-weathered, strongly sericite-altered, medi-
um-grained monzogranite containing disseminated subhe-
dral spongy pyrite (Figure 8). The altered rock is cut by
anastomosing veinlets/fractures and patches filled with
scorodite (FeAsO,-2H,0O; Plate 4C, D) and arsenopyrite
partly altered to scorodite and goethite (Figure 8). The stib-
nite-dominated veins consist of stibnite intergrown with
radial muscovite, and euhedral quartz and arsenopyrite
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Plate 4. Representative photomicrographs. A) Fractured muscovite—pyrite—rutile-altered monzogranite sample HS16-0184
under ppl; B) Same field of sample HS16-184 view under crossed nicols. Note that this is a thick thin section; C)
Stibnite—quartz—arsenopyrite-veined monzogranite sample HS16-020B under ppl; D) Same field of view of monzogranite sam-
ple HS16-020B under crossed nicols, E) Margin of stibnite—quartz—arsenopyrite vein and altered monzogranite sample HS16-
020B under ppl; F) BSE image of intergrown stibnite, quartz, arsenopyrite and muscovite in sample HS16-020B. Key:
Qz—quartz; Py—Pyrite; Apy—arsenopyrite; Stbn—stibnite; Mu—muscovite; Scd—scorodite; Zrn—zircon.
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Xenatime 0.02x 6396 63 0.03
Monazite 0.01% 5098 46 0.02%
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40
Hemorial Un

Figure 8. Electron microprobe MLA imagery for sample HS16-020B composed of stibnite—quartz—arsenopyrite-veined mon-
zogranite from the north central area of Yellow Fox Trench 1. A) BSE image of the thin section; B) MLA false-colour image
of the mineralogy of the thin section showing the location of image D; C) Coloured legend for B; D) BSE image of the min-
eralized margin of the scorodite-altered stibnite—quartz—arsenopyrite vein in sample HS16-020B. Key: Qtz—quartz, Mu—mus-
covite; Apy—arsenopyrite; Goe—goethite; Rut—rutile; Zrn—zircon, Scd—scorodite; Stb—stibnite.

(Figure 8; Plate 4E, F). The host rock consists of 60.5 wt. %
quartz surrounded by 36.0%, radial and locally tabular mus-
covite that has essentially completely replaced all earlier
feldspars in the rock (albite—orthoclase—perthite comprise
0.07%). Chalcopyrite, sphalerite, galena, siderite and calcite
are present in trace amounts (Figure 8). The rock still local-
ly retains a discernible granophyric texture.

LITHOGEOCHEMISTRY

Examination of the dataset reveals that weakly altered
reddened monzogranite is chemically identical to the region-

al, background monzogranite samples, with no apparent
depletion or enrichment in any element. Hence, these sam-
ples are all treated as fresh monzogranite unaffected by
hydrothermal alteration and have major- and trace-element
characteristics of calc-alkaline monzogranite (Figure 9A—C).
Relative to these fresh rocks, bleached and fractured mus-
covite—pyrite—rutile-altered monzogranite exhibits elevated
Si0, (74.5-78.4 vs. 70.3-74.0 wt. %), LOI (1.93-2.87 vs.
1.27-1.96 wt. %) and F (491-963 vs. 81-401 ppm), lower
K,O (3.44-4.82 vs. 4.70-4.99 wt. %), Ba (105-498 vs.
402-786 ppm), Rb (108-176 vs. 164-210 ppm), Sr (2-32 vs.
27-67 ppm), and Cs (0.7-3.1 vs. 1.8-6.2 ppm), and, signifi-
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Figure 9. Lithogeochemistry of the Yellow Fox samples including fresh (pink crosses), muscovite—pyrite—rutile-altered
(orange crosses) and stibnite—quartz—arsenopyrite-veined monzogranite (red stars) compared to samples of regional Mount
Peyton monzogranite (grey crosses: Dickson and Kerr, 2007, Sandeman, unpublished data, 2019). A) total alkalies vs. SiO,
(after Wilson, 1989),; B) Zr/Ti vs. Nb/Y classification diagram (after Pearce, 1996); C) Th/Yb vs. Zr/Y discrimination diagram
(Ross and Bédard, 2009); D) Rb vs. Y+Nb paleotectonic discrimination diagram (Pearce et al., 1984); E) Zr vs. 10°Ga/Al
(Whalen et al., 1987); F) Th/Yb vs. Nb/Yb (Pearce, 2008). Also shown are corresponding values for upper continental crust

(UCC; Rudnick and Gao, 2003).
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cantly lower CaO (0.03-0.20 vs. 0.13-1.80 wt. %) and, in
particular, Na,O (0.04-0.31 vs. 2.97-3.50 wt. %). Many of
the remaining major and incompatible trace elements in mus-
covite—pyrite—rutile-altered monzogranite have broadly sim-
ilar concentrations as those in unaltered monzogranite,
regardless of the intensity of alteration. Samples of the stib-
nite—quartz—arsenopyrite-veined monzogranite have the low-
est concentrations of all of the major elements with the
exception of FeO" and LOIL The majority of incompatible
trace elements, including the large ion lithophile elements
(LILE) and the rare-earth elements (REE), also have sub-
stantially lower abundances in stibnite—quartz—arsenopyrite-
veined monzogranite although their multi-element patterns
are essentially identical. The precious metals Au and Ag, as
well as many of the pathfinder elements (As, Sb, Cd) are all
variably enriched in the stibnite-veined monzogranite rela-
tive to both the unaltered monzogranite and the bleached,
fractured muscovite—pyrite—rutile-altered monzogranite.

Collectively, including all textural and chemical variants,
the Yellow Fox samples are very similar to the regional sam-
ples of the MPIS monzogranite, and are transitional I to A-
type granite (Pearce et al., 1984; Whalen et al., 1987, Figure
9D, E) having Th/Yb and Nb/Yb ratios characteristic of calc
alkaline granite formed through subduction processes (Figure
9F; Pearce, 2008).

All samples, including the fresh, muscovite—pyrite—
rutile-altered, and the stibnite-mineralized monzogranite
samples exhibit broadly comparable REE patterns (Figure
10A) and multi-element patterns (Figure 10B) with LILE
and light-REE enrichment (Lacy/Smey = 2.56-3.18: CN
denotes chondrite normalized) and weakly inclined middle
to heavy REE segments (Gd/Ybey = 1.15-1.72). They also
exhibit modest Ba, Nb and Eu troughs and prominent nega-
tive Sr, P and Ti troughs (Figure 10B). Apart from variable
relative abundances, little difference exists between the REE
and multi-element patterns of the samples from the three
monzogranite types (Table 1; Figure 10B), except that the
muscovite—pyrite—rutile-altered monzogranite and the stib-
nite—arsenopyrite—quartz-veined monzogranite typically
have deeper Ba, Nb, Sr, P, Ti and Eu troughs. The stib-
nite—arsenopyrite—quartz-veined monzogranite exhibits the
lowest incompatible trace-element abundances of the three
types (Figure 10A, B), although all samples have REE and
multi-element patterns comparable to a field for 27 archival
samples of MPIS granite (sensu lato; Dickson and Kerr,
2007; Sandeman, unpublished data, 2019).

ELEMENTS ASSOCIATED WITH
MINERALIZATION

Figures 11 and 12 present the salient inter-element vari-
ations for specific elements of interest for samples collected
from the Yellow Fox showing. Data from this study are com-
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Figure 10. A) Chondrite normalized rare-earth element plot
and; B) Multi-element diagram for samples from the Yellow
Fox showing. Normalization values are from Sun and
McDonough (1989). Symbols and fields as in Figure 9.

pared to the available mineral-exploration industry data
from the showing (Reid and Myllyaho, 2012), the regional
MPIS monzogranite database (Dickson and Kerr, 2007;
Sandeman et al., 2017; Sandeman, unpublished data, 2019)
and, the altered and precious-metal mineralized MPIS rocks
from the Salmon River prospects (Tallman, 1991a; Evans,
1996; Evans and Dimmell, 2001; Evans et al., 2001; Hoffe
and Sparkes, 2003; House, 2003, 2005, 2007a, b; Sandeman
et al., 2017). The industry data mainly incorporate ICP and
fire assay data for mineralized rocks from these areas,
whereas the data of Hoffe and Sparkes (2003), Sandeman et
al. (2017) and this study include a more complete and accu-
rate lithogeochmical database. Figure 11 illustrates that, rel-
ative to the unaltered monzogranite, muscovite—pyrite—
rutile-altered granite is characterized by variably elevated F
(mean 655 vs. 256 ppm ) and LOI (mean 2.38 vs. 1.49 wt.
%). In contrast, the stibnite—quartz—arsenopyrite-veined
monzogranite has broadly comparable F (mean 365 ppm),
but strongly elevated LOI (mean 13.38 wt. %), relative to
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Figure 11. Binary diagrams of (A) F vs. As and (B) LOI vs.
As for samples from the Yellow Fox showing. Grey symbols
represent samples from the MPIS-hosted, Salmon River and
Slip mineralized zones (Tallman, 1991a; Evans, 1996,
Evans and Dimmell, 2001; Evans et al., 2001; Hoffe and
Sparkes, 2003; House, 2003, 2005, 2007a, b, Sandeman et
al., 2017). UCC= upper continental crust composition from
Rudnick and Gao (2003). Regional, fresh MPIS monzo-
granite analyses from this study supplemented with those
from Dickson and Kerr (2007).

unaltered monzogranite. Figure 12 shows that muscovite—
pyrite-rutile-altered granite has variably elevated As, Au,
Ag, Sb and Pb, but only weakly anomalous, Zn, Cu, Cd and
Sn relative to unaltered monzogranite. Stibnite—arsenopy-
rite—quartz-veined monzogranite samples are the most
enriched in As, Ag, Sb and Pb, and also contain anomalous
Zn, Cu and Cd and weakly anomalous Sn (Figure 12). The
granophile elements Mo and W are not enriched in hydro-
thermally altered samples relative to unaltered Yellow Fox
monzogranite; however, these elements, as well as Sn, are
all slightly elevated relative to average upper continental
crust (UCC; Rudnick and Gao, 2003).

DISCUSSION

Field observations in 2016 and 2017, from mineral
exploration trenches that are now backfilled and reclaimed,
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indicate that the Yellow Fox showing is a fracture-con-
trolled, roughly north—south-trending, 30-m-wide by 100-
m-long, hydrothermally altered and mineralized zone host-
ed by ca. 419 Ma plagioclase porphyritic, granophyric-tex-
tured, hornblende—biotite monzogranite of the MPIS. The
core of the alteration zone is characterized by common,
5-20-cm-spaced, north-trending fractures (356°/80°E)
around which strong bleaching and muscovite—pyrite—rutile
alteration of the monzogranite has occurred. This core is
mantled by reddened and weakly altered monzogranite. In
the northernmost exposed bedrock (Trench 1), the frac-
tured, muscovite—pyrite-rutile-altered monzogranite is cut
by a <4-cm-wide stibnite—quartz—arsenopyrite vein
(025°/86°E) and veinlets that have euhedral arsenopyrite,
stibnite, muscovite and quartz, with mineralization also
developed in the vein margins. The euhedral arsenopyrite
grains are now largely replaced by a mixture of altered
arsenopyrite, stibnite and scorodite, and the vein-marginal
monzogranite is cut by scorodite—goethite-coated anasto-
mosing fractures. The latter represent the products of late-
stage, supergene alteration of the sulphide minerals and
arsenopyrite in particular.

The fractured, muscovite—pyrite—rutile-altered monzo-
granite exhibits variable, but modestly anomalous, As, Au,
Ag, Sb, Pb, and Cd relative to unaltered or weakly altered
granite. In contrast, the stibnite—quartz—arsenopyrite-veins
and altered wall-rock samples exhibit highly anomalous
concentrations of As, Ag, Sb, Pb, Zn, Cd and weakly anom-
alous in Cu. Gold is apparently absent in the stibnite—
quartz—arsenopyrite-veined monzogranite according to
INAA data from this study (likely the result of gamma spec-
trum interference from antimony); however, fire assay data
presented in Reid and Myllyaho (2012) suggest gold enrich-
ment in their stibnite-veined monzogranite samples. The
style and mineralogical characteristics of the alteration sug-
gest the early infiltration of an acidic (H,0-HF-HCL?), SiO,
+ K,0+Fe+(S)+Au+Ag+ Sb+ As + Pb £ Zn—Cd-Cu—
Sn(?)-bearing hydrothermal fluid along north-trending frac-
tures in the monzogranite. This led to the destruction of
feldspar, biotite and hornblende and the extensive replace-
ment of the primary minerals in the monzogranite through
the deposition of muscovite, pyrite and rutile. This event
was followed by the development of a second suite of north-
east-trending fractures, and the infiltration along those frac-
tures of a second, H,O + CO, + SiO, + K,O + Fe + (S?) +
Au + Sb + As + Ag + Pb + Zn + Cd £+ Cu-Sn(?)-bearing
hydrothermal fluid. Injection of this fluid led to the devel-
opment of stibnite-quartz-arsenopyrite veins, accompanied
by the deposition of euhedral stibnite, arsenopyrite and
quartz in the vein wall rock. Subsequent supergene oxida-
tion and hydration of the mineralization, possibly accompa-
nying uplift and erosion, generated the young, anastomos-
ing, scorodite—goethite-coated fractures.
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The samples of muscovite—pyrite—rutile-altered monzo-
granite at Yellow Fox exhibit similar Au:As, Cd:As and per-
haps Ag:As ratios to those of the intrusion-hosted, precious-
metal-mineralized zones along the Salmon River; however
their Sb:As and Pb:As distributions are distinct. Free gold
has not been observed in thin section, or through MLA analy-
sis, and may be hosted in the lattice of spongy pyrite. The
elevated metal content of the stibnite—quartz—arsenopyrite-
veined monzogranite is directly correlated with the volume
% sulphide minerals. Preliminary electron microprobe analy-
sis suggest the elevated As in the muscovite—pyrite—rutile-
altered monzogranite may be hosted in arsenian pyrite.

The age of the mineralization is not known, but must be
younger than the ca. 419 Ma age of the monzogranite.
Fracturing, alteration and deposition of anomalous metals
likely occurred in response to brittle failure of the rigid
MPIS accompanying Early Devonian, north-northwest-
directed thrusting (Dunning et al., 1990; McNicoll ef al.,
2006; Sandeman et al., 2018), and imbrication of the adja-
cent, greenschist-facies grade metasedimentary rock-domi-
nated sequences. The latter include the Badger Group in the
west and northwest, and the Indian Islands Group strata to
the east, which collectively form the country-rock carapace
to the MPIS (e.g., Dickson, 1993, 1996, 2006; Dickson et
al., 2000, 2007; O’Brien, 2003; Sandeman et al., 2018).
Termination of Early Devonian ductile deformation in the
northern Exploits Subzone has been precisely constrained at
415410 Ma on Birchy Island in the Bay of Exploits, 48 km
to the north—northwest (McNicoll et al., 2006). The brittle
fracturing of the MPIS that generated the fracturing and
alteration at Yellow Fox, and the Salmon River mineralized
zones may have been synchronous with, or postdated, that
final ductile deformation event. Direct geochronological
data for the age of alteration and mineralization are neces-
sary to resolve this temporal issue.
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